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Abstract. In this paper we present a new approach for the prediction of a be-
havioral variable from Functional Magnetic Resonance Imaging (fMRI) data. The
difficulty in this problem comes from the huge number of image voxels that may
provide relevant information with respect to the limited number of available im-
ages. A very common solution consists in using feature selection techniques, i.e. to
evaluate the significance of each individual brain region with respect to the target
information, and then to use the best ranked features as input to a classifier, such
as linear Support Vector Machines (SVM; we take this as the reference method).
However, this kind of scheme ignores the correlations between features, so that it is
potentially suboptimal, and it does not generally provide an interpretable pattern
of predictive voxels. Based on Random Forests, our approach provides an accurate
auto-calibrated framework for selecting a set of very few jointly informative re-
gions. Comparisons with the reference method on real data show that our approach
yields a little bit higher classification performance, but the real gain comes from
the sparsity of our variable selection.

Keywords: Feature selection, Variable Importance, Random forests, Classi-
fication, fMRI

1 Introduction

A new way of analyzing neuroimaging data consists in assessing how well
behavioral information or cognitive states can be predicted from brain ac-
tivation images such as those obtained with functional magnetic resonance
imaging (fMRI) (Cox and Savoy (2003)). This approach opens the way to
understanding the mental representation of various perceptual and cogni-
tive parameters. Indeed, certain neuronal populations are thought to activate
specifically when a certain perceptual or cognitive parameter reaches a given
value. The accuracy of the prediction of the target behavioral variable, as well
as the spatial layout of predictive regions can provide valuable information
about functional brain organization; in short, it helps to decode the brain
system (Dayan and Abbott (2001)).
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The main difficulty in this procedure is the huge dimensionality of the data,
with far more features than samples. In this article, the samples will refer
to the activation parameter maps resulting from a General Linear Model
(GLM), the features being the voxel-based activation values. The large num-
ber of features leads to overfitting and thus to a dramatic decrease in predic-
tion accuracy. Feature selection is thus mandatory, and is often performed by
a mass-univariate selection based on F-test statistics. However, this classical
approach is not well suited for neuroimaging as it does not cope with the
multivariate structure of the data.
In order to improve the predictive framework, we introduce a new multivari-
ate method of feature selection based on Random Forests (RF henceforth).
RF is an increasingly used statistical method introduced in Breiman (2001).
It gives outstanding results in prediction for lots of diverse applications. In
addition, it computes a variable importance that can be used to select vari-
ables. Our RF-based algorithm uses the variable importance index in a feature
selection framework. This variable selection procedure comes from Genuer et
al. (2010), where one can find more information about RF variable impor-
tance.
After introducing the Random Forests and the RF-based algorithm, we show
that our self-calibrated method performs an accurate feature selection, yield-
ing a little bit better classification score than the reference technique, while
keeping much less jointly informative variables. And this very sparse aspect of
our variable selection method can help understanding functional brain orga-
nization. Let us finally emphasize that all along this paper, we distinguish two
objectives: interpretation, which aims at selecting all the variables the most
related to the response variable (even if they are correlated to each other);
and prediction, which focuses on building a model involving the smallest
subset of variables sufficient to make accurate predictions.

2 Methods

Let (Y1, . . . , Yn) represent the behavioural data to be fitted (∀i, Yi ∈ {1, . . . , c},
where c is the number of classes) related to a set of n parameter maps ob-
tained with a GLM, where each image corresponds to one stimulus presenta-
tion; (X1, . . . , Xn) are the m-dimensional activation maps (X ∈ Rm) and m
is the number of features (voxels or parcels). In fMRI data, we have n� m,
so that feature selection is mandatory.

Random Forests
The principle of random forests is to aggregate many binary decision trees
built on several bootstrap samples drawn from the learning set. The bootstrap
samples are obtained by uniformly drawing n samples among the learning set
with repetition. The decision trees are fully developed binary trees and the
split rule is the following:
First, the whole dataset (also called the root of the tree) is split into two sub-
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sets of data (called two children nodes). To do that, one randomly chooses
a given number mtry of variables, and computes all the splits only for the
previously selected variables. A split is of the form {Xi ≤ s} ∪ {Xi > s},
which means that data with the i-th variable value less than the threshold s
go to the left child node and the others to the right one. Finally the selected
split is the one leading to the most homogeneous children nodes (i.e. subsets
associated to the same class).
Then, one restraints to one child node, randomly chooses another set of mtry

variables and calculates the best split. And so on, until each node is a termi-
nal node, i.e. it comprises observations associated with the same class.
A new data item X, starting in the root of the tree, goes down the tree
following the splits and falls in a terminal node. Then the tree predicts for
X, the common class Ŷ of the data in this terminal node. To finally get the
RF classifier, one aggregates all the tree classifiers through a majority vote
heuristic: for a new observation, each tree predicts a class and RF finally
returns the most popular class.
Inside the variable selection procedure, we use an estimation of the prediction
error directly computed by the RF algorithm. This is the Out Of Bag (OOB)
error and is calculated as follows. Fix one data in the learning sample, and
consider all the bootstrap samples which do not contain this data (i.e. for
which the data is “out of bag”). Now perform a majority vote only among
trees built on these bootstrap samples. After doing this for all data, compare
to the true classes and get an estimation of the prediction error (which is a
cross-validated error estimate).
Let us now detail the computation of the RF variable importance for the first
variable X1. For each tree, one has a bootstrap sample associated with an
OOB sample. Predict the OOB data with the tree classifier. Now, randomly
permute the values of the first variable of the OOB observations, predict
these modified OOB data with the tree classifier. The variable importance
(VI henceforth) of X1 is defined as the mean increase of prediction errors after
permutation. The more the error increases, the more important the variable
is (note that it can be slightly negative, typically for irrelevant variables).

Variable selection procedure
Let us give (following Genuer et al. (2010)) some details about the variable
selection procedure that we use here. We apply it on a simulated learning
set of size n = 100 from the classification toys data model, introduced in
Weston et al. (2003), with m = 200. It is an equiprobable two-class problem,
Y ∈ {−1, 1}, with 6 true variables, the others being some noise.
The results are summarized in Figure 1. The true variables (1 to 6) are re-
spectively represented by (�,4, ◦, ?,�, �). Based on to the learning set, we
compute 50 forests with ntree = 2000 and mtry = 100, which are values of
the main parameters considered as well adapted for VI estimation (for more
details, see Genuer et al. (2010)).
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Fig. 1. Variable selection procedure for a toy dataset. The top left graph shows
the variable ranking. The curve of the top right graph is used to determine the
threshold (represented by the horizontal dashed line) needed in Elimination step.
OOB errors of the nested models are plotted in the bottom left graph to illustrate
the Interpretation step. The bottom right graph stands for Prediction step.

Let us detail the four main steps of the procedure:
Variable ranking: First the variables are sorted according to the VI (av-
eraged from the 50 runs) in descending order. Note that true variables are
significantly more important than the noisy ones.
Elimination step: Keeping this order in mind, the corresponding standard
deviations of VI are plotted. A threshold for importance is computed using
this graph, and only the variables with an importance exceeding this level are
kept. More precisely, the threshold is set as the minimum prediction value
given by a CART model fitting this curve (for details, see Breiman et al.
(1984)).
Interpretation step: Then, OOB error rates of the nested random forests
models are computed; starting from the one with only the most important
variables, and ending with the one involving all important variables kept pre-
viously. The set of variables leading to the smallest OOB error is selected.
Prediction step: Finally a sequential variable introduction with testing is
performed: a variable is added only if the error gain exceeds a data-driven
threshold (see Genuer et al. (2010)). The rationale is that the error decrease
must be significantly greater than the average variation obtained by adding
noisy variables.

3 Experiments and Results

Real Data
We used a real dataset related to an experiment on the representation of
objects Eger et al. (2008). During the experiment, twelve healthy volunteers
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viewed objects of three different sizes and four different shapes, with 6 repe-
titions of each stimulus (refering to 6 sessions), resulting in a total of n = 72
images by subject. Functional images were acquired on a 3-T MR system with
eight-channel head coil (Siemens Trio, Erlangen, Germany) as T2*-weighted
echo-planar image (EPI) volumes. Twenty transverse slices were obtained
with a repetition time of 2 s (echo time, 30 ms; flip angle, 70◦; 2× 2× 2-mm
voxels; 0.5-mm gap). Realignment, normalization to MNI space and GLM fit
were performed with the SPM5 software. For our analysis we used the re-
sulting session-wise parameter estimate images. The four different shapes of
objects are pooled across the three sizes, and we are interested in discrimina-
tion between shapes. We used parcellation as a preprocessing, which allows
important unsupervised reduction of dimensions. Parcellation uses Ward’s
algorithm (hierarchical agglomerative clustering) to create groups of voxels
which have similar activity across trials. Thus, the signal is averaged in each
parcel. The number of parcels created is fixed to 1000 for the whole brain.

Feature selection results for one subject

Fig. 2. Variable selection procedure for one subject. The graphs follow the exact
same description as in Figure 1.

We apply the procedure described in Section 2 for the subject 2 of the study.
The results are plotted in Figure 2. The horizontal dotted line of the top
graphs indicates the threshold, computed using standard deviations of VI
(see the top right graph) and used in the top left graph to eliminate variables
of small importance. Starting with all the 1000 variables, this elimination
step retains 176 variables. The minimum OOB error rate in the bottom left
graph is obtained by the RF model involving 50 variables, which constitute
the interpretation set. Finally, the prediction procedure, illustrated by the
bottom right graph, selects 15 variables.
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(a) (b) (c) (d)

(a’) (b’) (c’) (d’)
Fig. 3. Example of the different steps of the framework for one subject (slice z=6
mm). (a) Selected parcels after Elimination Step. (b) Selected parcels after Inter-
pretation Step. (c) Selected parcels after Prediction Step. (d) Shows the parcels
selected by the reference method, and their F-test values. (a’), (b’), (c’) and (d’)
are magnifications of the occipital part.

Figure 3 shows the selected parcels for the different steps of the algorithm
in one axial slice for subject 2: sub-figures (a), (b) and (c) represent the
variables selected in the Elimination step, Interpretation step and Predic-
tion step, and (d) represent the variables selected by the reference method.
Sub-figures (a’), (b’), (c’) and (d’) are magnifications of the occipital part.
During the interpretation step, our algorithm keeps only three regions of the
occipital cortex, reducing the features to a much smaller sets while keeping
an accurate prediction (see Figure 4). In addition, the prediction step (c)
allows to avoid redundancy in the features. The selected regions are different
between the two hemispheres, while the interpretation step retained more
symmetric regions. Finally, comparison whith sub-figure (d) highlights the
most beneficial aspect of our method: we select very localised informative re-
gions, while the reference method keeps lots of regions distributed in all brain.

Prediction results for the whole data
We perform a leave-one-session-out cross-validation: we successively train the
classifier with all the sessions except one, and report the performance of the
trained classifier on the left out session. Importance-based feature selection
was applied independently on the twelve datasets. The results are shown in
Figure 4. The first row represents the classification score of RF for each sub-
ject (from left to right: all parcels, after Elimination step, after Interpretation
step and after Prediction step). The average number of selected parcels across
subjects is noted above each histogram, with the average classification score
across all subjects.
The first graph of the second row shows the results of a cross-validated linear
SVM: the optimal number of parcels to be kept (from 50 to 1000 parcels
with a step of 50) for the linear SVM is selected using the F-statistic, by
leave-one-out validation on the training set. The average number of selected
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parcels across subjects is equal to 350. The three last histograms of the sec-
ond row show the results of a linear SVM: the parcels are selected by using
a F-statistics, and the number of features used is equal to the number of
parcels found by the three different steps of the RF-based algorithm. We can
see that our algorithm gives better accuracy for the three steps of selection
than the reference method (cross-validated linear SVM). And the three last
histograms of the second row illustrate the fact that a linear SVM (coupled
with F-test) do not manage to keep good accuracy with as few features as
selected by our method.

Fig. 4. Results on real data: rate of correct object identification, using the mean
signal of 1000 parcels of the brain volume (chance level=25 %). The first row shows
the prediction accuracy in each individual dataset, the mean classification score
and the number of selected parcels for (from left to right) the whole brain, the
Elimination step, the Interpretation step and the Prediction step. The first graph
of the second row represents the results for the reference method. The three last
histograms of the second row show the prediction accuracy of a linear SVM trained
with the same number of parcels as above, but selected by F-statistics.

4 Discussion

This work presents the first application of a RF-based feature selection tech-
nique to brain state decoding. We show that it is competitive with state of
the art method (univariate selection followed by linear SVM classifier). More
importantly, the insensitivity of the correct classification rates along the dif-
ferent steps of feature reduction that is observed in Figure 4 for the RF model
shows that our strategy manages to extract the statistical information of the
data: it keeps much of the information while significantly reducing the di-
mension. This suggests that the multivariate RF variable importance index
performs better than the classical univariate F-test score to detect the most
predictive variables. Another noticeable aspect of the proposed procedure is
that it is entirely data-driven: at each step of the procedure, thresholds are
computed using only the data. So this procedure can adapt to lots of different
applications, without the need of adding prior information (like e.g. a number
of variables to be selected).
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Fig. 5. Regions selected in at least 3 subjects
among 12 by the last step of the RF-based se-
lection. The MNI coordinates are :
[18, -102, 6]mm
[10, -100, 4]mm
[-12, -96, 0]mm
[50, -78, 6]mm.

From a neuroscientific point of view, we can notice that the spatial distribu-
tion of the selected parcels is quite informative: first, by avoiding redundancy,
the algorithm is able to focus on few extremely precise regions of the brain
without loss of accuracy. Moreover, starting from whole brain, the algorithm
selects very few parcels in the occipital cortex, corresponding to visual areas.
If we look at the regions selected for 3 subjects or more among the 12 subjects
by the last step of the RF-based selection (see Figure 5), there are only few
regions in the early visual cortex, and a slightly more anterior parcel. This
is consistent with the fact that early visual cortex contains highly reliable
signals discriminative of feature/shape differences between object exemplars,
as long as no generalization across image changes is required (Cox and Savoy
(2003) and Eger et al. (2008)).
Conclusion In this article, a multivariate and threshold-free feature selec-
tion algorithm based on Random Forests, yields an accurate selection for
fMRI data analysis, and creates a highly informative set of very few features.
Results on real data show the benefits of our approach for both interpretation
and prediction, with higher accuracy and higher sparsity than the reference
method.
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